《Nature》:华人科学家再获突破!开发3D打印超低密材料
导读:本文通过设计管中管梁结构来探索一种不同的方法来增强低密度结构材料。开发了一种将完全致密的 3D 打印聚合物梁转换为石墨碳中空管中管夹层形态的过程,其中,类似于草茎,内管和外管通过支柱网络连接。压缩测试和计算模型表明,梁形态的这种变化显著减缓了刚度随着密度降低而降低的速度。原位柱压缩实验进一步证明了压缩 30-50% 后的大变形恢复和高比阻尼性能指数。我们的支撑管中管设计开辟了空间,实现了非常理想的高模量-低密度和高模量-高阻尼材料结构。
单片多孔超低密度材料有许多新兴应用,如机械减震器、隔热和隔音、柔性电池和催化剂支架、微机电设备。其中一些应用,例如用于电池电极的碳支架,将受益于降低非活性碳材料密度,同时仍然提供高比表面积以及高刚度和形状恢复特性。然而,进一步开发超低密度结构材料的主要挑战是克服随着密度降低而机械性能迅速恶化的问题。在第一代的低密度碳材料的(即,碳气凝胶),刚度与密度降低,由于其随机或连接不良的结构非常迅速下降。
通过改善网络连通性,碳纳米管网络和石墨烯泡沫刚度的下降显著减少. 然而,尽管单个结构单元的固有刚度非常高(即,碳纳米管或单层石墨烯的杨氏模量 ( E ) 为~1 TPa),但三维 (3D) 组件仍然表现出低得多的模量密度低于理论预测。最近,增材制造技术已启用与精确限定的几何形状和变形模式相当多的复杂的结构。直接激光写入-双光子聚合 (DLW-TPP) 的进步现在可以探索计算机设计的架构,以及纳米级尺寸对材料特性的影响,例如,允许实现DLW-TPP 衍生的碳纳米晶格的强度提高了六倍,其光束比玻璃碳微晶格小三个数量级。
在大多数关于结构化热解碳的研究中,是由打印结构的直接裂解制备的样品,从而导致大的线性收缩率(高达80%)和相对高的密度(> 100毫克厘米-3)。虽然这些碳材料的模量和强度在高密度下接近理论极限,但当降低密度时,这些晶格设计的缩放指数仍然可以高于 1。这归因于存在制造缺陷、冻结接头和结构的有限尺寸. 因此认为,除了使用以拉伸为主的晶格设计(例如八位组桁架)之外,仔细设计梁本身对于在低密度下保持高刚度可能至关重要。
在这项工作中,美国科学斯利弗莫尔劳利莫尔国家实验室华人科学家叶建超等人通过开发一种基于支撑管中管 (STinT) 夹层形态的更硬的中空管设计来解决这个问题。具体来说,我们通过两步镍催化模板热解过程制造具有集成 STinT 束形态的碳基微晶格来证明这一概念(图1a)。这种制造过程保持了打印的牺牲聚合物模板的结构和尺寸,以提供密度低至 6.4 mg cm^-3 的非常坚硬的碳晶格. 研究成果以题“Ultra-low-density digitally architected carbon with a strutted tube-in-tube structure”发表在nature materials
文章来源:材料学网
本网站转载内容为作者个人观点,并不代表本站赞同其观点和对其真实性负责。如果您发现本网站上有侵犯您的知识产权的内容,请与我们取得联系,我们会及时修改或删除