收藏
点赞
微博
微信
阅读
1609

国外核工业领域3D打印技术有哪些应用?

三维-小鱼
2021-08-29 12:00:00

1.美国橡树岭国家实验室
美国橡树岭国家实验室(ORNL)正在牵头实施“转型挑战反应堆”(The Transformational Challenge Reactor Demonstration Program,TCR)建设计划。TCR计划于2019年启动,目标是集成3D打印等先进制造技术、新材料、计算科学等领域的最新研发成果,将于2023年建成一座微型反应堆。该计划将充分利用橡树岭在设备制造、材料、核科学、核工程、数据分析及相关领域的创新能力。

TCR的3D打印
橡树岭表示,TCR将使用新型先进材料,并采用一体化的传感器和控制部件,建设一座先进反应堆,目标是依靠科技进步降低反应堆造价,并为反应堆的设计、制造、取证和运行开辟一条新的道路。TCR计划已完成多项基础实验,包括堆芯设计的选择以及为期三个月的“冲刺”。后者的主要目的是证明将3D打印技术用于快速制造原型堆芯的敏捷性。研究人员未来将进一步优化已选定的设计和流程。

TCR打印的模型
TCR堆芯位于使用传统技术制造的不锈钢压力容器中。堆芯由氮化铀三元结构各向同性(TRISO)燃料和堆芯结构件组成。堆芯结构件使用3D打印技术制造,材料为碳化硅。燃料块布置在不锈钢结构中,并与氢化钇慢化剂混合在一起。氢化钇慢化剂能够最大限度地减少实现临界所需的高丰度低浓铀数量。TCR将成为橡树岭建设的第14座核反应堆。

TCR团队对堆芯进行神经网络分析
2020年5月11日,美国能源部橡树岭国家实验室(ORNL)宣布:核电反应堆核心3D打印技术取得了阶段性突破。据介绍:TCR六边形反应堆组件的3D打印花费了将近40个小时,在3D模型周围的温度达到1400℃以上,激光加热和熔化模型的同时也为其增加了新的叠层。目前实验室的研究人员正在改进他们的设计,优化3D制造工艺,并论证打印部件的一致性和可靠性。
ORNL实验室主任托马斯·扎卡里亚(Thomas Zacharia)表示:挑战3D打印反应堆组件是以前从未有过的方式,是制造学、材料学、核科学、核工程、高性能计算、数据分析与其他相关领域共同合作的成果。

这张照片显示了具有双壁包层和冷却通道的燃料元件,其中包含高表面积和螺旋形导向装置


TCR技术总监库尔特·特拉尼(Kurt Terrani)表示:在过去的几个月里,我们一直在积极开发这个项目,我们的努力已经证明,这项技术已经准备好演示3D打印核反应堆核心。目前的核形势非常严峻,此类3D打印技术可以为核领域的快速创新提供帮助。3D打印核反应堆作为TCR部署计划的一部分,将为先进核能系统的加速部署提供一个新的模式。除此之外我们还将创建一个数字平台,帮助将技术移交给其他工业,方便用此类技术快速制造零件。
BWXT核运营集团有限公司已获得美国能源部橡树岭国家实验室的合同,生产TRISO核燃料,以支持“转化挑战反应堆”(TCR)的持续开发。

TCR增材制造的槽形通道紧固件
2020年12月,TCR项目制造的3D打印槽形通道紧固件首次装入位于华盛顿州Richland的法马通核燃料制造工厂的Atrium 10XM沸水反应堆上,用于将燃料通道固定到组件格栅。它们使用3D打印技术,在ORNL进行印刷。


2.西屋电气公司
除了橡树岭国家实验室外,美国西屋电气公司(Westing house)2020年5月4日宣布,在2020年春季停堆换料期间,拜伦1号机组已成功安装使用3D打印技术制造的顶针堵漏装置。这是全球首次在反应堆堆芯安装3D打印构件。

拜伦1号机组中的顶针堵漏装置
此外,市场上已经出现了用于燃料棒的SiC覆层,它可以承受比锆高得多的温度。由于SiC燃料棒通常具有非常粗糙的表面,对于水平凹坑设计,尤其是在大多数压水反应堆网格中通常使用的水平凹坑设计,存在潜在的损坏隐患。西屋电气设计了一种新的燃料组件隔离栅设计,并通过3D打印一次性将结构作为一体化组件制造出来。
西屋电气设计的间格栅具有沿着细长燃料组件的竖直轴线的轴向尺寸,核燃料组件格栅包括多个管状燃料棒支撑单元,具有四个横截面通常为正方形的壁。在相邻的燃料棒支撑室或控制棒支撑室中,每个壁有内部支撑垂直弹簧。西屋电气还考虑了一种混合叶片,该混合叶片在燃料杆支撑单元之间的区域中,连接至燃料杆支撑单元的外部。

西屋公司3D打印制造的燃料格栅
通过引入3D打印技术,可以在不进行进一步组装或焊接过程的情况下打印西屋电气开发的格栅。与现有的格栅设计相比,新的设计允许SiC型燃料棒的平滑插入,同时还带来低压降。增材制造技术使得格栅设计允许:
1)实施高度精细但完全集成的混合功能,从而增强热和水力性能;
2)最小化总压降;
3)提高整体网格强度以应对震动。
GE还利用SLM 3D打印技术进行原型设计,设计了GNF2核燃料组件,如下图所示,该组件改进了杂物滤网,显著降低碎片接触燃料棒的概率,提高了可靠性,并降低运营成本。

GNF2核燃料组件及其杂物过滤网


3.法国法马通公司


2015年,法马通公司(Framatome)在德国埃尔兰根实验室启动增材制造项目,项目重点在于使用增材制造技术制造不锈钢和镍基合金燃料组件。来自法国、德国和美国的燃料专家参与了该项目,欧盟及美国能源部也对该项目予以支持。
法马通计划使用增材制造技术为压水堆、沸水堆和VVER机组生产燃料组件。法马通强调,该技术还可用于其他核燃料方面的应用,包括快速成型、试验组件和燃料生产线工具制造、堆内燃料检查和服务工具修复等。


2020年11月,法国法马通公司表示其通过3D打印技术生产的燃料组件已在瑞士戈斯根(Gösgen)核电厂(1010MWe,PWR)完成首个辐照检测周期。

瑞士戈斯根(Gösgen)核电厂
据了解,这批实验性不锈钢和镍基合金部件于2019年载入戈斯根核电厂反应堆,为了检验其是否合格,共需完成5个辐照检测周期。后续将对辐照后的燃料组件实施进一步检查,从而确认其在实际运行工况下的性能。


4.俄罗斯原子能公司


俄罗斯国家原子能公司(Rosatom)计划将先进3D打印技术作为其非核心业务战略的一部分,根据该公司的计划,其最新的3D打印业务将首先用于其核电领域,然后再延伸到其它业务部门,而且这一3D打印业务将使用由其自行开发的创新金属粉末材料和工业级3D打印机,该公司的很多部门都提出了在本部门中可以使用3D打印技术制造的零部件种类。
截止2020年,3D打印技术已经成为了Rosatom非核业务的领先领域之一。Rosatom拥有提供增材制造服务的所需要的大部分专门知识技能,制订了关于设备、材料和技术的计划,来帮助将任何设计思想变成最终的产品。公司还专注于测试3D打印部件以确保其可靠性和安全性,这样它们才能够抵御很高中子通量的辐射。


5.其它机构
2016年6月份,通用电气和日立核能(GEH)联合启动了用3D打印来制造核电厂所需零部件的项目。这些零部件诞生后会被送到美国爱达荷国家实验室(IDL)接受核辐射测试,然后与未受辐射的材料进行比照。由于极具前景,这个项目已经获得了美国能源部200万美元的资金支持。

GEH发言人Hollyn Phelps表示,在这个项目中,3D打印技术带来的好处显而易见,比如能大大简化零部件制造流程从而将制造时间缩短十倍左右。虽然受限于3d打印机的尺寸,GEH目前能实现的最大构建体积只有400立方毫米左右,但对于一些小尺寸部件,比如碎片过滤器、沸水反应器,以及抗震动喷射泵来说,这已经足够了。另外,对于新建的核电厂来说,3D打印技术还可用于制造精细运动控制棒驱动器。
德国西门子公司(Siemens)2017年将3D打印消防泵叶轮安装在斯洛文尼亚克尔什科核电厂,至今一直持续安全运行,实现3D打印设备在商业核电厂的首次应用。

3D打印核电站消防水泵用叶轮
2019年早些时候,瑞典两家3D打印企业Additive Composite公司和Add North 3D公司联合发布了适于核工业辐射屏蔽应用的新型碳化硼复合丝,可以用来作为核电站的屏蔽材料。

3D打印是近几年兴起的一种新型制造技术,在核能领域有着广阔的发展前景。国外核电巨头都开始积极布局,并生产了部分3D打印部件用于核反应堆。美国橡树岭实验室的TCR项目还计划使用 3D打印技术生产反应堆堆芯,以实现核反应堆建设的历史性变革。

来源: 高端装备产业研究中心

本网站转载内容为作者个人观点,并不代表本站赞同其观点和对其真实性负责。如果您发现本网站上有侵犯您的知识产权的内容,请与我们取得联系,我们会及时修改或删除